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Stress Distribution in a Semi-Infinite Body
Symmetrically Loaded Over a Circular Area
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Algorithms are developed for computing stresses in a semi-infinite body when loaded
by a uniform pressure acting over a circular areq.

I. Introduction

The stress distribution through a semi-infinite body of
isotropic material has been obtained in various ways. For the
particular case where the loading on the plane surface is one of
uniform pressure acting on a circular area, the stress compo-
nents can be calculated by numerically evaluating the integral
expressions presented herein. These integrals can be evaluated
by desk calculator programs, thus making it easy to determine
any stress component in a semi-infinite body having a known
constant Poisson’s ratio. The solution of this problem has a
direct application to circular columns resting on large footings
and can be helpful in estimating stresses in foundations
supporting certain vehicle rails.

Il. Derivation of the Algorithms

If a concentrated force P is applied perpendicularly to the
plane surface of a semi-infinite body, the stress components
per Ref. 1 are:
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where the coordinates are defined as follows: Assume the
plane of the semi-infinite body to be horizontal and on the
upper side of the body. The coordinate » is the horizontal
distance from the point of concern, point 0, to the point
directly beneath the force P. The positive coordinate Z is the
distance that point O is below the plane. The coordinate ¢ is
mutually perpendicular to r and Z. The symbols ¢ and 7
represent the normal and shear stresses, respectively, and v is
Poisson’s ratio.

The solution for the case of a uniform pressure acting over
a circular area of radius 2 is obtained by replacing the
concentrated load P by pdA where p is the uniform pressure
and dA4 is a differential area, and appropriately summing over
the circular area.
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Let the point O be on a vertical plane which passes -through
the center of the circularly loaded area, as shown in Fig. 1.
The differential area is rd@dr. It is desired to obtain the stress
components along axes R, T, and Z, namely, Ogs> Ops Og and
the shear stress 7, ,. By symmetry the other shear stresses will
be zero.

Thus from these four components, principal stresses can be
calculated. By the usual method of resolving two-dimensional
stress components the following obtain:
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The stress components Ops> Ops 05 and TRz caused by the
pressure loading over a differential area are formed by
substituting prdrdé for P in Egs. (1), (2), (3), and (4) and sub-
stituting the results into Eqgs. (5), (6), and (7). The following
double integrals represent the desired stress components in
terms of the coordinates#, 9, and Z:
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Equations (8), (9), (10), and (11) are readily integrated
with respect to 7 to yield:
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A distinction must be made between Case 1, where point 0
lies under or on the loaded area, as shown in Fig. 1, and
Case 2, where point O lies outside the loaded area, as shown in
Fig. 2.

For Case 1 the point is located distance fz from the
boundary of the circle and a distance ya below the surface.
The distance from point 0 to point U is OU, where

0U=a‘:(l-ﬁ)+ /(1+B)2

The distance from point O to point L is OL, where

L = -a [(1 -p)- /(1+B)2

and the positive roots of the radicals are to be used.
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In order for the integration to cover the entire circular area
for Case 1, the bracketed terms of Egs. (12), (13), (14), and
(15) must be evaluated for two sets of limits and summed,
namely between QU and zero and between OL and zero. The
limits of @ are #/2 and zero provided the integrals are
multiplied by 2.

For Case 2 the point O is located a distance aa from the
boundary of the circle and a distance yz below the surface.
The upper and lower limits of the bracketed terms of Egs.
(12), (13), (14), and (15) are respectively:
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The limits of @ are arc tan v/1/a(a + 2) and zero provided the
integrals are multiplied by 2.

The results are as follows:
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The integrals of Egs. (20), (21), (22), (23), (26), (27), (28),
and (29) can easily be integrated numerically on programma-
ble desk calculators. Angular increments of 1/9 the angular
range will produce results sufficiently accurate for most engi-
neering applications. These programs are available on four
cards for HP97 calculators.
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Principal stresses can be calculated per Ref. 2 as follows:
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iil. Discussion of Results

On the plane surface of the semi-infinite body the stresses
Op, Op, and oy are discontinuous at the boundary of the
loaded circular area. Even at finite values of v, that is, for
points beneath the plane surface, the algorithms fail when the
points are directly beneath the boundary. However, in Ref. 2
it is demonstrated that there are no infinite stress values
obtained at the boundary and that all stresses are continuous
at the boundary except those at the surface. Therefore, the
values at the boundary may be approximated by considering
very small values of the parameters a or . For these reasons it
is convenient to plot the calculated stresses on a semi-
logarithmic chart with the abscissas ¢ and § extending in
opposite directions from a common small value. In Fig. 3 this
has been done for a Poisson’s ratio of 0.15, starting with « and
B values of 0.001. Figure 3 gives the stresses at various dis-
tances below the plane surface, that is, at y values of 0, 0.001,
0.01, 0.10, and 1.00. The ranges are sufficient to show the
value and location of the maximum tensile stresses.

The curves of Fig. 3 pertain to a Poisson’s ratio of 0.15
because this is a typical value for a Portland cement grout.
Such grout has a tensile strength far less than its compressive
strength. The curves can be useful in determining what tensile
strength is necessary to ensure that surface cracks are not
likely to form, and how far below the surface the high tensile
stress region extends.

The curves of Fig. 4 pertain to a Poisson’s ratio of 0.30,
representative of many metals. Only the stress components op
and o, are shown, since o, and 75, are independent of
Poisson’s ratio and may be taken from Fig. 3, By comparing
corresponding curves of Figs. 3 and 4 it is seen that the effect
of Poisson’s ratio on g5 and o, is large.

Results obtained with the above algorithms, by dividing the
angular range into 9 parts, agree with the tabulated values of
Ref. 2.

By superposition the stresses can be calculated for any
circularly symmetric loading. For example, the real loading
could be approximated by a number of uniforms loads of
different radii, and the effects of each appropriately summed
by the above algorithms. |
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Fig. 1. Integration limits when point 0 lies below loaded circular area
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Fig. 2. Integration limits when polnt 0 lies outside loaded
circular area
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Fig. 3. Stress ratios vs a & 3, v = 0.15
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Fig. 4. Stress ratios vs o & 8, v = 0.30
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